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Abstract—The problem of a thin layer delaminating from a contracting cylindrical substrate is
considered. An analytical solution is obtained along with associated conditions for growth of the
delamination. and specific numerical results corresponding to layers at both the interior and exterior
surfaces of the substrate are presented.

INTRODUCTION

A mechanism of degradation associated with layered structures is the phenomenon of
debonding of adjacent layers known as “delamination™. Delaminations can occur in struc-
tures constructed from layered materials such as “Advanced Composites™, or may occur
at the surface of a structure possessing a thin film coating. Such delaminations can occur
during fabrication or as a consequence of low-velocity impact[l.2]. When a structure
containing delaminations is subjected to load, the layers adjacent to the delamination can
buckle locally causing the debonded arca to grow. Such delamination growth may have
dramatic effects on the integrity of the corresponding structure, or cause flaking of a thin
film coating thus reducing its cffectivencess.

To date, several authors have examined various aspects of this problem[1-20} with the
majority of papers being concerned with delamination associated with (initially) flat layers.
Kachanov{4], however, considered the problem of a thin layer debonding from the interior
surface of a cylindrical substrate which is subjected to external pressure and obtained
bounds which correspond to a “critical stress™ for initiation.

In the present work the problem corresponding to growth of a pre-existing delami-
nation at the interface of a thin layer and a contracting cylindrical substrate is considered.
The problem is approached as a moving boundary problem in the calculus of variations by
employing the principle of stationary potential energy in conjunction with a Griflith type
energy balance. A shallow arch theory is used as the mathematical model for the layer while
the behavior of the substrate is assumed to be effectively unaltered by the presence of the
layer and hence is modeled as a “rigid” but contracting “foundation™. An analytical solution
along with an associated growth criterion is found. Specific numerical results are obtained
for both the case of a layer delaminating from the exterior surface of the substrate as well
as for that of a layer debonding from the corresponding interior surface. These results
reveal several characteristic features associated with the phenomena of interest and are seen
in some cases to differ qualitatively from, and in others to be qualitatively similar to
corresponding results obtained for flat layers.

FORMULATION OF THE PROBLEM

Consider the thin elastic film or layer adhered to the wall of a smooth circular cavity
contained within a “rigid™ but contracting “substrate™ as shown in Fig. I. The film is
initially debonded from the substrate over a small portion of its surface and is shown in a
buckled configuration. As the deflection of the cavity wall will be considered prescribed and
uniform, we shall divide the film into three regions. The first, which shall be referred to as
the “lift zone™ or “lift region™ of the film shall be defined over the domain 2, corresponding

t Portions of this investigation were conducted while the author held a Rutgers Junior Faculty Summer
Fellowship awarded by the Rutgers Research Council.
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Fig. 1. Thin layer delaminating from the interior surface of a cylindrical substrate: (1) “lift zone™.
(2) “contact zone™, (3) “bonded zone™.

10 0 <0 < ¢ where 0 is the angular coordinate measured clockwise from the vertical. Tt
corresponds to the portion of the debonded scgment of the film which is lifted away from
the substrate. The second region of the layer will be referred to as the “contact zone™ or
“contact regton™ and corresponds to the portion of the debonded scgment of the film in
contact with the substrate. Tt is defined over the domain 27, corresponding to ¢ < 0 < $*.
The final region of the film corresponds to the bonded portion of the film and is defined on
the domain /', which corresponds to ¢* < 0 < . Duc to the symmetry of the problem we
need only consider the half of the structure defined on [0, n).
We shall approach the problem in the spirit of Bottega[7] and Bottega and Macewal[§
10] as a moving intermediate boundary problem in the calculus of variations with the
intermediate boundary ¢ between the Lift and contact zones and the intermediate boundary
¢* defining the size of the delamination being sought as part of the solution. The governing
differential equations, associated boundary and interface conditions and traversality con-
ditions resulting from the two moving intermediate boundaries are found by incorporating
a Griftith type fracture criterion at the delamination edge and applying the theorem of
stationary potential energy. The transversality condition at the delamination edge, 0 = ¢*,
yiclds a growth criterion governing the delamination while that at the “lift zone™ /" contact
zone™ interface, 0 = ¢, estublishes the conditions defining the lift zone. We shall assume
that unbonded and debonded surfaces are smooth. The substrate will be assumed to be
extremely “stiff ™ refative to the layer, hence the behavior of the substrate will be considered
to be effectively unaltered by the presence of the layer. The contribution of the substrate to
the energy release rate during growth of the delamination will therefore be neglected (see,
c.g. Ref. {11]). thus allowing the problem to be formulated in terms of the energies associated
with the debonding layer alone.
Let us begin by formulating the encrgy functional, T, as follows:

1
M=Y U"+A+4; (1
|

where U corresponds to the normalized strain energy of the segment of the layer defined
on 7., A is a constraint functional restricting the radial deflections on 25, and & is the
normalized “fracture energy™.

Within the context of the present formulation. the normalized strain encrgy of the
segment of the layer defined on @, U, will be composed of two parts U} and U4y such
that
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U?=Ug+Uy )

where U}’ which corresponds to the normalized bending energy and U’} which corresponds
to the normalized membrane energy are given by

L,
L/;;ﬂ = ;J\'m K‘- d0 (3d)
and
R
U = ?('.:f N7 do (3b)
where
YL =0, Y = ¢ (4a.b)
o =, Pl = P (4c.d)
‘l,fl_x) . {f)*‘ ;3) =7 (4C. f)

and C = 12/h* is the normalized membrane stiffness of the layer while & « U is the nor-
malized thickness of the fayer. In eqns (3a) and (3b) K, corresponds to the normalized
“relative curvature” of the fuyer on 2, (the difference between the present curvature of the
layer and the curvature of the layer in its undeformed configuration assumed equal to that
of the initial curvature of the cavity wall) and N, corresponds to the normalized resultant
membrane force on 22, These quantitios, which are variable on 27, + 2, and “prescribed”™
on ¥, are given by

K= w'+w, (=12 (54)

and
N, = —Clt,—w, + n?] (i=12) (5b)
Ky=Ky=wy/(l—wy) xwy, (5¢)

and
Ny=pP,=Cw, (5d)

respectively, where we have employed the shallow arch equations of El-Bayoumy[21] which
assume that w, « L. In eqns (Sa) and (5b), «, (positive) clockwise and w, (positive inward)
correspond to the normalized circumferential and radial deformations, respectively, of a
material particle located on the centerline of the segment of film on &, while wy, corresponds
to the normalized deflection of the cavity wall, and a superposed prime denotes differ-
entiation with respect to 0 fi.e. ( ) = d( )/d0]. All deformations are normalized with respect
to the initial radius of the cavity wall.

The constraint functional, A, which restricts the radial deflections of the segment of
the layer in 27, is defined by

b
A= f A(ws—wy) di) (6)

']

where A is a Lagrange multiplier, while the normalized “fracture energy™. &, is given by
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Ee = 1(¢*— 3 (7

where y is the normalized surface energy of the bond, a property of the layer material and
substrate material, as well as the bond, and ¢$ defines the initial size of the delamination.
For the problem at hand. the principle of stationary potential energy may be stated as

ol =0 (&)

where 8 corresponds to the variational operator and IT corresponds to the energy functional
given by eqn (1).

Substitution of eqns (2)~(7) into (8) and taking into account the moving intermediate
boundaries at = ¢ and ¢* (see, e.g. Gelfand and Fomin[22}) yields the governing differ-
ential equations

K'+K+(Nw) +N, =p, 9
N;=0} beo, (i=12) (10)
and
W, = Wy, e, (n
where
pi=0 and p, =7 (12
the boundary and matching conditions
[Ki+Nwiooo =wi{0) =1, (0) =0 (13 ¢
wil) = wal),  wild) =wild),  u (b)) = u.(p) (H4a ¢©)
Ni(h) = Ni() (14d)
wa{*) = wy, wi{P*) = u (P*) =0 {154 ¢)

and the transversality conditions at 0 = ¢ and ¢* resulting from the vanishing of cocllicients
of 3¢ and dp*, respectively, in eqn (8). These conditions are given by

I : \
[‘) (Ki =KD+ K — Ko’y = Kiwl + Kaw'h = 20wy —wy)

l 5 ) .3 » o
‘+"_)C(/VI“‘IVS)"‘Nl(Ull+“'1‘)““‘N2(U:+H':')} :0 (l())
< i o ip
and
2 2 | b b . £
[; (Ki—K;)+ Ky — Kowi+ ;)»&(Nz——l’,‘))—f-/.(w: —w.,)»HV:(u’:-*—w:‘)+2}1 = ().
- - #e

(17

From the form of eqns (9) it is apparent that p; may be identified as the contact
pressurc p, from which we have that
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P2 =p=l, 0592. (IS)

If we next integrate eqn (10) and impose eqn (14d) we find that
N, = N; = N, = constant {19)

where N, is still to be determined. Taking eqns (18) and (19) into account, the governing
differential equations reduce to

Llw) =pda~N,, 02, (i=12) (20a.b)
and
Wz = Wa, 66@2 (ZOC)

where the operator ¥ is defined by

4 2

d d
@ = ; +2)— + 2
de* (No+2) de? l 2D

and J,, corresponds to Kronecker's delta. The associated boundary and matching conditions
may be reduced to

w?(0) = w'(0) =0 (22a.b)
w () = wi(d), wi (@) = wi(e) {23a.b)
wi(h*) = w,,  wi($*)=0 (24a,b)

with eqns (13¢), (14¢), (15¢), and (20), combined to eliminate u; and u, and form an
equivalent expression in terms of the functions w, and w, as follows:

ry
,[) (w1 =1wi?) dO+wo(@* — ) = $*N,/C. (25)

The transversality conditions given by eqns (16) and (I17) may similarly be reduced to the
following forms:

wi(@) = wi($) =0 (26)
and
i
Z_C"(No“Po)zlew- =2y (¢ < 0*) (27a)
1 1
[i (K)—Ko) + EE(N"-P")IL.W =2y (¢ =19%. (27b)

Equations (26) and (27) define conditions {or the values of the “lift zone™/**contact zone™
interface ¢, and the delamination boundary ¢*, respectively, such that each (¢, ¢*) pair
corresponds to a state of equilibrium. As discussed below, each of the above conditions
may be interpreted as an energy balance at the point in question.

SAS 2d:tes
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The first transversality condition (26) is seen to specify that the location of the “lift
zone™/“contact zone™ interface, ¢. which corresponds to an equilibrium configuration is
one for which the bending moment is continuous across the interface.

The second transversality condition (27) states that the delamination size is such that
the relative stretching energy at the delamination edge is balanced by the bond energy if
the “lift zone™ has not propagated throughout the delamination (¢ < ¢*). or that the sum
of the relative bending and relative stretching energies at the delamination boundary are
balanced by the bond energy if the lift zone™ traverses the entire delamination. Equations
(27) define the “delamination growth path™ for the layer/substrate system. The following
growth criterion is suggested by (27).

If

Y= oo (Nog=Po)liees €20 (0 < ™) {28a-1)

or

1 . | s .
Gy = [-,‘(K! - Ko} + 7(. (N()""Pn)‘:{ £ 2y (p = (b*) (28a-)
- = =y

no growth occurs with ¢* remaining at its imitial value ¢,
If

w,o> 2y (h < P*) (28b-1)
or
G, > 2y (¢ = *) (28b-11)

growth occurs until ¢* satisfics eqns (27). The refative stretehing energy in eqn (27a) and
the sum of the relative bending and stretehing encrgies in eqn (27b) correspond to the
energy release rates during growth of the delamination. We thus see that the growth of the
delamination is governed by cither mode H fructure or a combination of mode 1 and mode
I fracture, We may also note that, within the context of the present model, growth does
not occur unless tocal buckling of the layer oceurs.

The system of differential equations, eqns (20), along with conditions (22) (27), con-
stitute a multiple moving boundary problem for the deflections w,(0), the membrane
force N, the “interface angle™ ¢, and the delamination boundary ¢*. The corresponding
analytical solution will be presented in the next section.

ANALYTICAL SOLUTION

We shall now obtain the analytical solution corresponding to the problem formulated
in the previous section. The solution shall correspond to two phases, the first being when
the “lift zone™ is smaller than or just equal to the size of the delamination with growth
governed by eqns (28a-i) and (28b-i). The sccond phase is such that the “lift zonc™ traverses
the entire delamination (¢p = ¢*) and growth is governed by eqns (28u-ii) and (28b-ii). The
phase corresponding to ¢ < ¢* shall be considered first,

Equation (20a) can be solved for w(0) to yicld

Wi = (woe+ N} FO 2. 9)— N, 9

where
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cos 8/x
cos ¢/a

cos 26 s
tan ¢/x —x- tan x
[ ¢ cos ¢ ¢

[tan ¢/x—2a” tan ag]

F(O:2,¢9)= (30)

and
1’ = é[No+2+\/(A\'0(N0+4))] >1 or Ny=(x'=1)a? (31)

which when substituted into eqns (26) and (27) give the explicit forms of the transversality
conditions. We thus have that

tan x¢—2° tan ¢/x =0 (32)
and either
{ s
Z—C:(No—CWu)" =2y (¢<¢% (33a)
or
HOwg+ No) F" = wyKollp g + 2‘5’ (No=Cwo)* =2y (¢ = ¢%). (33b)

As scen by eqn (20¢), the radial deflection of the layer in the “contact zone™ &, is
cqual to that of the substrate wall, and when substituted into (20b) gives

p= A= wo+ Ny ((/) £0< ¢‘)

Substitution of eqn (29) into ¢qn (25) gives the required condition

(wo+No)H(z, p)— %(Wu + N(,)IZ(:Z. P)+wy(d*—)— No(‘b + %‘) =0 (34)
where
H(x, $) = @-b, t 35
a )= — - an a¢ tan ¢/a (35a)
Z(nd) = i"[‘)?‘:&"’%; [x¢p —cos 2 sin agh]
3 pan?
+ 2-;-;;;?;,;3; [($/2)—cos ¢/ sin /]
20 t
- (141_ 3 an a¢D zzm ¢l [tan xp —a? tan ¢/a] (35b)
and
D = tan ¢/x—a® tan ag. (35¢c)

Equation (34) may be solved for w, explicitly, upon expanding and neglecting terms of
O(w}) compared with those of O(w,). We then have
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No(p+0*/C)—Ny[H(x. ¢)— ENUZ(l d’)]
H(x, ¢)— NoZ(2. §)+ (¢* — ) ’

wy = wo(2, 9. 0*%) = {347

Equations (32). (33a). and (34) constitute a system of coupled non-linear algebraic equations
which may. in principle, be solved simultaneously to yield N,. ¢. and ¢* as a function of
w, for given values of C and 7.

Once the lift zone completely envelops the debonded segment of the laver. conditions
(32) and (33a) are replaced by eqn (33b) (a condition is removed since it is established that
¢ = ¢*) as lifting may continue without ¢ increasing. Equations (33b) and (34) may be
solved simultaneously to give N, and ¢* as a function of w, for given values of the
normalized membrane stiffness C and normalized bond energy 7.

NUMERICAL RESULTS

We shall next present results corresponding to small contractions of the substrate
boundary (i.e. w, <« 1) for the specific problem where C = 2 x 10, The results will be given
for the case of a layer delaminating from the exterior surface of a cylindrical substrate as
well as for the case of a layer delaminating from the interior surface of a cylindrical substrate
{or equivalently from the wall of a cylindrical cavity). The latter will be considered first.

Interior layer

As scen from egns (27) and (28), growth of the defamination is dependent upon the
relative stretching energy at the delamination edge, 4, until the lift zone just reaches the
delamination boundary. After this occurs, growth of the delamination is governed by the
sum of the relative stretching and relative bending energics at the delamination tip, 4,

We shall first consider the case where ¢ < ¢* . As described above, substitution of
eqn (347 into eqn (33a) in conjunction with eqn (32) results in a non-lincar algebraic
cquattion in x, ¢, and ¢*, from which an infinite number of roots, a2, may be found for cuch
combination of ¢ and ¢*. We shall scek the lowest value of x (i.c. the value of x associated
with the “first buckling mode™) for which the “relative crown point deflection™,
Ay = w(l)) —wy, is positive. The latter may be found by evaluating eqn (29) at # = 0 and
then subtracting the substrate wall deflection, w,. which may be obtained from eqn (34')
for the specific (x, ¢, ¢$*) combination.

The roots, a, of the aforementioned non-lincar algebraic equation are found for specilic
delamination boundary angles, ¢*, for desired “lift zone™/”contact zone™ interface angles,
¢ < ¢* 7, by first iterating on a and finding intervals upon which the left-hand side of the
equation changes sign and then by employing the bisection technique (interval halving).
The resulting cavity wall contractions, w,, and “relative crown point deflections™, A, are
then found as discussed earlier, and the energy release rates, 4, are subsequently evaluated.
The computed values of %, are displayed in Fig. 2 as a function of w, for various values of
the delamination boundary angle ¢*.

Each point lying on a curve displayed in Fig. 2 corresponds to a specific value of ¢,
with ¢ increasing as we traverse the curve in a clockwise fashion, the curve terminating at
the point which corresponds to ¢ = ¢*. We note here that as ¢ — 0, w, increases, thus
prohibiting the curve from intersecting wy = 0. These “leftward progressing™ portions of
cach curve correspond to unstable values of the “interface angle”t and would likely bend
toward the origin in the presence of geometrical imperfections. We shall therefore consider
only the “rightward progressing” (i.c. “upper™) portions of thesc curves. Though the precise
points at which these curves are intersected as w, increases are unknown, we shall assume,
for later discussions, that such intersection points are near the leftmost portion of the curve,
i.c. the point corresponding to the minimum value of w, on that curve. With this assumption
we sec that “small” delaminations effectively “exist” only with ¢ = ¢*.

Upon further obscrvation of Fig. 2, we note that for a given value of %, w, decreases
as ¢* increases with the corresponding points getting closer and closer as we increase ¢*.

tSce, c.g. Ref. [21], where the special case of a completely debonded layer was considered.
1+ Sce, ez Refl {23,
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Fig. 2. Relative stretching energy at delamination edge vs substrate wall contraction for various

delamination sizes: (1) ¢* = 0.062, (2) ¢* = 0.074. (3) ¢* = 0.10, (4) $* = 0.15, (5) ¢* = 0.20, (6)

$* = 0.30, (7) ¢* = 0.60. The “lift zone™[*contact zone™ interface angle ¢ < ¢*  increases along
cach path as the path is traversed in a clockwise fashion (€ = 2.0 % 10°).

This implies that for a given value of %,, w, decreases approaching an asymptotic value as
$* increases. As lower values ol wy correspond to lower values of the energy of the layer,
for a given mode, the above, along with eqns (28a-i) and (28b-i), imply that when growth
occurs, (and ¢ € ¢*7) it is extensive. Lastly, it is scen from Fig. 2 that for a given
delamination size, ¢*, the maximum relative stretching energy at the delamination tip
occurs when the lift zone spans the entire delamination. In other words, for a given ¢*,
%, =%,  when¢ = ¢*~. These values are plotted as a function of delamination angle and
are presented in Fig. 3. From the growth criterion (28) it is seen that the curve displayed
in Fig. 3 defines the “boundary™ scparating the “regions” where %, governs initial delami-
nation growth (below the curve) from the regions where %, initially governs delamination
growth (above the curve). In addition, we note from Fig. 3 that the curve is monotonically
increasing from which it may be inferred that in a general sense, %, governs the growth of
“large™ delaminations while %, governs the growth of “small” delaminations.

Once the “lift zone™ spreads through the entire span of the delamination, the curvature
of the layer is no longer restricted at any point to be that of the substrate wall. For this
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Fig. 3. Vartation of maximum relative stretching encrgy with delamination size (C = 2.0 x [0°).
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Fig. 4. Delamination growth paths corresponding to a thin layer adhered to the interior surface of
substrate when the “htt zone™ spans the entire delamination (i.e. when ¢ = ¢*), and C = 2.0 x [0°.

case %y, governs growth and solution (29) together with the associated transversality con-
dition (33b). corresponding to the case where ¢ = ¢*, now holds. In this regard, upon
substitution of eqn (34°), eqn (33b) may be solved numerically for given values of 7 and C,
in the manner described above, to yield the lowest admissible x > 0 for cach ¢*. The
corresponding values of w,, subsequently obtained from eqn (34%), may be plotted vs ¢* to
yield the “delamination growth paths™ associated with a given bond strength, 2. Four such
“paths”, corresponding to the cases y = 1, 10, 50 and 100, arc shown in Fig. 4. The dashed
curve in the figure corresponds to the value of w at cach ¢* such that 4, = 4_... We note
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that the curves appear asymptotic as ¢* increases, indicating that if a substrate deflection
greater than a certain value is achieved before growth begins, growth will be unstable and
extensive (catastrophic) once it does begin. Such phenomena is dependent upon the initial
delamination size. and occurs when ¢ < 0.050 for y = 10, ¢§ < 0.030 for y = 50 and when
¢} €0.027 for y = 100. Growth is seen to be catastrophic for all values of ¢ ¥ corresponding
to v = 1. We also note the existence of a critical delamination size, ¢* = ¢¥, corresponding
to the “minimum’™ on each “path™. Such a point separates the occurrence of ““stable growth™
corresponding to an incremental increase in delamination size with an incremental increase
of w, when ¢* > ¢F, from the occurrence of “unstable growth™ when ¢* < ¢ where the
delumination size increases a finite amount with an incremental increase in wy and is then
followed by stable growth. Such values of ¢* are bounded by the catastrophic regions
defined above before growth begins. Once growth begins, the corresponding path is
followed. For the cases considered we see that ¢F x> 0.070fory = 10, ¢* = 0.046fory = 50,
and ¢* x 0.038 for y = 100. Let us consider the following specific examples. Suppose first
that a delamination of angle ¢* = 0.30 exists at a layer/substrate interface with bond
strength 2y = 20 (as before. C = 2 x 10%). We note from Fig. 3 that %, = 20 lies below the
curve and hence that %, governs growth for this case. If the cylinder is subsequently
contracted, w, increases and eventually intersects the path in Fig. 2 corresponding to
d* = 0.30. As w, is further increased ¢ increases (recall that ¢ increases as we progress
clockwise along the corresponding paths in Fig. 2) until w, x 0.46 x 10~ at which point
% = 2v. From the above discussion we see that at this point delamination growth occurs
in an unstable and catastrophic manucr.

Let us next consider a delamination of initial size ¢F = 0.1 for bond strengths of 2y = 2
and 100, We see from Fig. 3 that %, governs growth for both cases and we see from Fig. 2
that for a bond strength of 2y = 2, ¢ = ¢* almost immediately after the curve is intersected
corresponding to a value of w, x 0.00185. For this same bond strength, it is seen from Fig.
4 that catastrophic growth begins when wy is increased shightly to a value of wy = 0.00205,
For a bond strength of 2y = 100, however, itis scen that no growth occurs until wy, = 0.0097
with subsequent increases in w, resulting in stable growth of the delamination. Finally, let
us consider a delamination of initial size ¢ = 0.062 at an interface with bond strength
2 = 20. We note from Fig. 3 that 4, governs growth, It is scen from Fig. 4 that as wy s
increased, no growth oceurs until wy, = 0.00435 at which time the delamination grows in
an unstable manner until it reaches a size of ¢* = 0.09. Further increases in w, result in a
stable spreading of the delamination until ¢* grows to a value of approximately 0.228 at
which point 4, governs once again and catastrophic growth occurs.

In general then, we see that, as discussed carlier, delamination growth of an interior
layer may ocecur when ¢ < ¢* (via “mode 1 fracture’} and that when such growth occurs
it occurs in an “unstable” and “catastrophic” manner. We also see that ¢ may progress
with increasing w, unaccompanied by delamination growth until ¢ = ¢*. If this occurs,
grow th may oceur via a combination of "mode I and “mode H™ fracture and may progress
in a “stable™ manner, in an “unstable™ manner, or in an “unstable™ and “catastrophic”
manner.,

Exterior luyer

We next consider results corresponding to a layer which is deluminating from the
exterior surfuce of a cylindrical substrate. For this problem the layer buckics away from
the contracting substrate as shown in Fig. 5 with no contact with the substrate except, of
course, at ¢ = ¢*. Solution (29) with transversality condition (33b) is thercfore applicable
if we consider solutions such that the “relative crown point deflection™ is negative, and
interpret all quantitics as being normalized with respect to the exterior radius of the
substrate. Proceeding as for the previous case we obtain the growth paths corresponding
to the lowest value of «, for each ¢*, such that A, < 0.

The growth paths correspondingto C = 2 x 10°and y = 1, 10, 50, and 100 are displayed
in Fig. 6. It is seen that each path contains a minimum with the corresponding value of ¢*
specifying a critical delamination size which separates delamination sizes that grow in a
stable manner from those which grow in an unstable manner. It is also seen that each path
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5. Thin layer delaminating from the exterior surface of a cylindrical substrate.
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Fig. 6. Delamination growth paths corresponding to a thin layer adhered 1o the exterior surface of
a cylindrical substrate (C = 2.0 x 10°).

tends to an asymptote indicating the possibility of “catastrophic growth”. As the left-hand
portions of the growth paths incrcase with decreasing ¢* we note the existence of a
sccond “‘critical delamination size™ such that delaminations smaller than this size grow
catastrophically oncc growth begins. Finally we note, upon observing each path in Fig. 6,
that as the bond encrgy decreases, the “stable well” of the path widens and its depth
decreases indicating a tendency toward more extensive unstable growth and catastrophic
behavior with decreasing bond energy. For the specific delamination growth paths shown,
we see that unstable growth occurs, followed by stable growth, for delaminations which
are such that ¢* < 0.032 for y = 100, ¢* < 0.038 for y = 50, ¢* < 0.051 for y = 10, and
¢* < 0.067 for y = |, while catastrophic growth occurs for those same values of the bond
encrgy, when ¢* < 0.022, 0.025, 0.034, and 0.044, respectively.
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As an example let us consider the case of an initial delamination, of size ¢ = 0.030,
exists at the interface between an exterior layer and a cylindrical substrate where the
normalized energy of the bond is given by 2y = 100 (y = 50). As the cylinder contracts. no
growth occurs until wy =~ 0.00885. The delamination then grows in an unstable manner
until ¢* = 0.054. Further increases in the substrate wall deflection result in stable growth
of the delamination as we follow the rising portion of the growth path shown. If we consider
a delamination of initial size ¢§ = 0.022, no growth occurs until the cylinder wall contracts
to wy = 0.01275 at which time growth occurs catastrophically. Finally, if we consider a
delamination of initial size ¢§ = 0.060 we observe that as we contract the cylinder, no
growth occurs until w, = 0.009 at which time growth begins with the delamination size
increasing in a stable manner as the cylinder wall is further contracted.

To conclude then, we see that delamination growth at the interface of layers bonded to
the exterior surface of the substrate occurs via a combination of “Mode I'" and **Mode [
fracture, with the qualitative features of the growth behavior more closely resembling those
for flat layers than do those of the interior layers (see, e.g. Refs [6, 8]).

CONCLUDING REMARKS

The problem of a thin layer delaminating from a contracting cylindrical substrate was
considered for the case where the equilibrium of the substrate is effectively unaltered by the
behavior of the surface fayer. The problem was formulated as a moving boundary problem
in the calculus of variations where the “moving boundaries™ corresponding to the “lift
zone™'/"contact zone™ interface, and the delamination edge, were parametcrized by their
corresponding angles, while a shallow arch theory was employed as the mathematical model
for the tayer. The “strength™ of the bond was characterized by the surface energy of the
bond, a property of the layer/substrate/bond system.

The resulting transversality conditions were seen to specify the criteria for the “inter-
face™ and “delamination angles™ to correspond to a state of equilibrium. It was shown that
the lift zone/contact zone interface angle must be such that the bending moment is con-
tinuous at that point. The criteria governing delamination growth resulted from the employ-
ment of a Griflith type criterion in the energy functional, from which it followed that if a
portion of the delaminated segment of the layer considered is in contact with the substrate,
the corresponding growth of the delamination is governed by the *‘relative stretching
energy” at the delamination edge, with the associated delamination angle corresponding to
a state of equilibrium being such that the aforementioned energy is balanced by the energy
of the bond. It wus also found that if the “life zone™ traverses the entire delamination prior
to the onset of growth, then the growth of the delamination is governed by the sum of the
“relative stretching™ and “relative bending energies™ at the delamination edge, with the
value of the delamination angle which corresponds to a state of equilibrium defined in a
manner analogous to that for the previous case.

Numerical results corresponding to specific values of the normalized layer thickness
and bond energy were obtained for both the case of a layer delaminating from the exterior
surfuce of the substrate and the case of a layer delaminating from the interior surface of
the substrate. Growth behavior predicted at the interface between an exterior layer and the
substrate was scen to qualitatively resemble that predicted by Chai ef ul.[6] for the analogous
problem of a flat layer on a substrate, while growth behavior at the interface between
an interior layer and the substrate was scen to be substantially more complicated. This
“complication™ is scen to be due to the existence, and size change, of the “contact zone™
arising from the non-vanishing curvature of the substrate. Delamination growth predicted
for both exterior and interior interfaces was seen to occur in either a stable manner, an
unstable manner followed by a stable manner, or in a catastrophic manner. [t was observed,
however, that predicted growth at the interior interface exhibited a greater tendency toward
catastrophic growth.
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